北京邮电大学学报(社科版) ›› 2020, Vol. 22 ›› Issue (1): 44-52.doi: 10.19722/j.cnki.1008-7729.2019.0383

• 经济与管理 • 上一篇    下一篇

不确定环境下考虑政府补贴的双回收渠道绿色闭环供应链研究

  

  1. 上海理工大学 管理学院,上海200093
  • 收稿日期:2019-11-19 出版日期:2020-02-28
  • 基金资助:
    国家自然科学基金资助项目(71071093,71471110,71301101);上海市自然科学基金资助项目(10ZR1413300);陕西省社会科学基金资助项目(2015D060)

Green Closed-loop Supply Chain with Dual Recycling Channels #br# Considering Government Subsidy under Uncertainty

  1. University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2019-11-19 Online:2020-02-28

摘要: 在市场需求和回收品质量水平不确定的环境下,构建考虑政府补贴的双回收渠道绿色闭环供应链系统总成本模型。为求解该模型,运用模糊机会约束规划方法解决需求量和回收品质量不确定问题,并采用粒子群优化算法和遗传算法对模型进行对比求解。结果表明:(1)不同需求量和回收品质量组合下企业的成本有变化;(2)对比两种回收渠道补贴,发现制造商补贴占优;(3)在政府补贴情况下,企业对绿色原材料采购的恰当绿色度水平是03~06;(4)为有效提高回收率,政府对回收产品实施二次补贴的恰当质量水平为037~043。

关键词: 不确定需求, 不确定回收质量, 模糊机会约束规划, 政府补贴, 双回收渠道, 绿色度, 粒子群优化算法, 遗传算法

Abstract:  Under the environment of uncertain market demand and recycling quality, a total cost model of a green closed-loop supply chain system with dual recycling channels considering government subsidies was constructed In order to solve the model, the fuzzy chance constrained programming method was used to solve the problem of uncertain demand and recovery quality, and the particle swarm algorithm and genetic algorithm were used to compare and solve the model The results show that: (1) the cost of the company varies under different combinations of demand and recycling quality; (2) the comparison of the two recycling channel subsidies finds that the manufacturers subsidy is dominant; (3) under the government subsidy, the appropriate level of the companys procurement of green raw materials is 03 to 06; (4) in order to effectively improve the recovery rate, the appropriate quality level for the government to implement secondary subsidy for recycled products is 037 to 043

Key words: uncertain demand, uncertain recycling quality, fuzzy chance constrained programming, government subsidy, dual recycling channel, green degree, particle swarm optimization, genetic algorithm

中图分类号: