[1] JINDAL N, LIU B. Review spam detection[C]//International Conference on World Wide Web. New York: ACM, 2007: 1189-90.
[2] JINDAL N, LIU B. Analyzing and detecting review spam[C]//IEEE International Conference on Data Mining. Washington DC: IEEE, 2007: 547-552.
[3] 孙升芸, 田萱. 产品垃圾评论检测研究综述[J]. 计算机科学, 2011, 38(Z10): 198-201.
[4] 聂卉, 王佳佳. 产品评论垃圾识别研究综述[J]. 数据分析与知识发现, 2014, 30(2): 63-71.
[5] HEYDARI A, TAVAKOLI M A, SALIM N, et al. Detection of review spam: a survey[J]. Expert Systems with Applications, 2015, 42(7): 3634-3642.
[6] DEWANG R K, SINGH A K. State-of-art approaches for review spammer detection: a survey[J]. Journal of Intelligent Information Systems,2018,50(2):231-264.
[7] RESHMA P R. Survey on spam detection techniques in online review systems[J]. Imperial Journal of Interdisciplinary Research, 2017, 3(2): 1140-1143.
[8] SHARMA K, LIN K I. Review spam detector with rating consistency check[C]//ACM Southeast Conference. New York: ACM, 2013:1-6.
[9] CAGNINA L C, ROSSO P. Detecting deceptive opinions: Intra and cross-domain classification using an efficient representation [J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2017, 25(Suppl. 2): 151-174.
[10] NARAYAN R, ROUT J K, JENA S K. Review spam detection using opinion mining[C]//SA P, SAHOO M, MURUGAPPAN M, et al.Progress in Intelligent Computing Techniques: Theory, Practice, and Applications. Singapore: Springer, 2018:273-279.
[11] KARAMI A, ZHOU B. Online review spam detection by new linguistic features[C]//Iconference. California: iSchools, 2015:1-5.
[12] LAU R Y K, LIAO S Y, KWOK C W,et al. Text mining and probabilistic language modeling for online review spam detection[J]. Acm Transactions on Management Information Systems, 2012, 2(4): 1-30.
[13] 谭文堂, 朱洪, 葛斌,等. 垃圾评论自动过滤方法[J]. 国防科技大学学报, 2012, 34(5): 153-157.
[14] MORALES A, SUN H, YAN X. Synthetic review spamming and defense[C]//International Conference on World Wide Web. New York: ACM,2013:155-156.
[15] LI X, YAN X W. A novel Chinese text mining method for e-commerce review spam detection[C]//CUI B, ZHANG N, XU J, et al. Web-Age Information Management. Nanchang: Springer,2016: 95-106.
[16] LI L Y, REN W J, QIN B, et al. Learning document representation for deceptive opinion spam detection[C]//SUN M, LIU Z, ZHANG M, et al. Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. Guangzhou: Springer, 2015: 393-404.
[17] DANDIBHOTLA T S. Finding and classifying the deceptive spam reviews using LIWC dictionary variables and decision tree classifier[J]. International Journal of Engineering & Technology, 2018, 10(1): 308-315.
[18] BANERJEE S, CHUA A Y K. Applauses in hotel reviews: genuine or deceptive?[C]//Science and Information Conference. Washington DC: IEEE, 2015:938-942.
[19] ZHANG W, JIANG Y P, YOSHIDA T. Deep context identification of deceptive reviews using word vectors[C]//CHEN J, NAKAMORI Y, YUE W, et al. Knowledge and Systems Sciences. Kobe: Springer, 2016: 213-224.
[20] SIAGIAN A H A M, ARITSUGI M. Combining word and character n-grams for detecting deceptive opinions[C]//Computer Software and Applications Conference.Washington DC: IEEE, 2017:828-833.
[21] REN Y, JI D. Neural networks for deceptive opinion spam detection: an empirical study[J].Information Sciences, 2017, 385-386:213-224.
[22] LI H, LIU B, MUKHERJEE A, et al. Spotting fake reviews using positive-unlabeled learning[J]. Computacion y Sistemas, 2015, 18(3): 467-475.
[23] 邓莎莎, 张朋柱, 张晓燕, 等. 基于欺骗语言线索的虚假评论识别[J]. 系统管理学报, 2014, 23(2): 263-270.
[24] MAYZLIN D, DOVER Y, CHEVALIER J. Promotional reviews: an empirical investigation of online review manipulation[J]. American Economic Review, 2014, 104(8): 2421-2455.
[25] OTT M, CHOI Y, CARDIE C, et al. Finding deceptive opinion spam by any stretch of the imagination[C]//Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: 2011: 309-319.
[26] NAJADA H A, ZHU X. iSRD: spam review detection with imbalanced data distributions[C]//IEEE International Conference on Information Reuse and Integration.Washington DC: IEEE, 2014: 553-60.
[27] DONG B, LIU Q, FU Y, et al. A research of Taobao cheater detection[C]// 13th Conference on E-Business,E-Services and E-Society.Sanya: Springer, 2014: 338-345.
[28] YUAN Y, XIE S, LU C T, et al. Interpretable and effective opinion spam detection via temporal patterns mining across websites[C]//IEEE International Conference on Big Data. Washington DC: IEEE, 2016:96-105.
[29] JINDAL N, LIU B. Opinion spam and analysis[C]//International Conference on Web Search & Data Mining. New York: ACM, 2008: 219-230.
[30] MUKHERJEE A, LIU B, WANG J,et al. Detecting group review spam[C]//International Conference Companion on World Wide Web.New York: ACM, 2011: 93-94.
[31] ANSARI G, AHMAD T, DOJA M N. Review ranking method for spam recognition [C]//GOEL S, SANGHI D, ZOMAYA A Y, et al. Ninth International Conference on Contemporary Computing. Washington : IEEE, 2016: 290-294.
[32] LI F, HUANG M, YANG Y, et al. Learning to identify review spam[C]//International Joint Conference on Artificial Intelligence. Catalonia: ACM, 2011: 2488-2493.
[33] VIVIANI M, PASI G. Quantifier guided aggregation for the veracity assessment of online reviews[J]. International Journal of Intelligent Systems, 2017, 32(5): 481-501.
[34] XIE S, WANG G, LIN S, et al. Review spam detection via temporal pattern discovery[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 823-31.
[35] XU C, ZHANG J. Combating product review spam campaigns via multiple heterogeneous pairwise features[C]//Proceedings of the 2015 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Vancouver: Society for Industrial and Applied Mathematics,2015: 172-180.
[36] LI H, CHEN Z, MUKHERJEE A, et al. Analyzing and detecting opinion spam on a large-scale dataset via temporal and spatial patterns[C]//International AAAI Conference on Web and Social Media. Oxford, England: AAAI Press,2015: 634-637.
[37] KUMAR N, VENUGOPA D, QIU L, et al. Detecting review manipulation on online platforms with hierarchical supervised learning[J]. Journal of Management Information Systems, 2018, 35(1): 350-380.
[38] HEYDARI A, TAVAKOLI M, SALIM N. Detection of fake opinions using time series[J]. Expert Systems with Applications, 2016, 58:83-92.
[39] LIN Y, ZHU T, WANG X, et al. Towards online review spam detection[C]//International Conference on World Wide Web. New York: ACM, 2014: 341-342.
[40] SAVAGE D, ZHANG X Z, YU X H, et al. Detection of opinion spam based on anomalous rating deviation[J]. Expert Systems with Applications, 2015, 42(22): 8650-8657.
[41] HOOI B, SHIN K, SONG H A, et al. Graph-based fraud detection in the face of camouflage[J]. Acm Transactions on Knowledge Discovery from Data, 2017, 11(4): 1-26.
[42] AKOGLU L, CHANDY R, FALOUTSOS C. Opinion fraud detection in online reviews by network effects[C]//International AAAI Conference on Weblogs and Social Media. Massachusetts: AAAI Press, 2103:2-11.
[43] ZHANG Q, WU J, ZHANG P,et al. Collective hyping detection system for identifying online spam activities[J]. IEEE Intelligent Systems, 2017, 32(5): 53-63.
[44] WANG G, XIE S, LIU B, et al. Review graph based online store review spammer detection[C]//IEEE International Conference on Data Mining. Washington DC: IEEE, 2011: 1242-1247.
[45] 王琢, 李准, 徐野, 等. 基于评论图的虚假产品评论人的检测[J]. 计算机科学, 2014, 41(10): 295-299.
[46] RAYANA S, AKOGLU L. Collective opinion spam detection: bridging review networks and metadata[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015:985-994.
[47] GUO B, WANG H, YU Z, et al. Detecting spammers in e-commerce website via spectrum features of user relation graph[C]//International Conference on Advanced Cloud and Big Data. Washington DC: IEEE, 2017: 324-30.
[48] WANG Z, GU S, ZHAO X, et al. Graph-based review spammer group detection[J]. Knowledge & Information Systems, 2018, 55(3): 571-597.
[49] YE J, AKOGLU L. Discovering opinion spammer groups by network footprints[C]//APPICE A, RODRIGUES P, SANTOS COSTA V, et al.Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Porto: Springer Cham, 2015: 267-282.
[50] WU X, DONG Y X, TAO J, et al. Reliable fake review detection via modeling temporal and behavioral patterns[C]//IEEE International Conference on Big Data. Washington DC: IEEE, 2017: 494-499.
[51] EIMURRIGI E, GHERBI A. An empirical study on detecting fake reviews using machine learning techniques[C]//International Conference on Innovative Computing Technology. Washington DC: IEEE, 2017:107-114.
[52] ZHANG L, WU Z, CAO J. Detecting spammer groups from product reviews: a partially supervised learning model[C]//IEEE Access. Washington DC: IEEE,2018: 2559-2568.
[53] DO Q N T, HUSSAIN F K, BANG T N. A fuzzy approach to detect spammer groups[C]//IEEE International Conference on Fuzzy Systems. Washington DC: IEEE, 2107:1-6. |