[1] 徐达宇,杨善林,罗贺.基于广义模糊软集理论的云计算资源需求组合预测研究[J].中国管理科学,2015,23(5):56-64.
[2] 江伟,陈羽中,黄启成,等.一种云环境下的主机负载预测方法[J].计算机科学,2018,45(6):283-287.
[3] 文静,李陶深,黄汝维.IaaS下基于预测的弹性云服务的研究[J].系统工程理论与实践,2014,34(s1):263-268.
[4] RUBEN V D B, VANMECHELEN K, BROECKHOVE J. IaaS reserved contract procurement optimization with load prediction [J]. Future Generation Computer Systems, 2015, 53:13-24.
[5] CHEN J, WANG Y. A resource demand prediction method based on EEMD in cloud computing [J]. Procedia Computer Science, 2018, 131:116-123.
[6] KUMAR J, SINGH A K. Workload prediction in cloud using artificial neural network and adaptive differential evolution [J]. Future Generation Computer Systems, 2018, 81:41-52.
[7] PAULRAJ G J L, FRANCIS S A J, PETER J D, et al. A combined forecast-based virtual machine migration in cloud data centers [J]. Computers & Electrical Engineering, 2018,69(6):287-300.
[8] NHUAN T, THANG N, BINH H, et al. A multivariate fuzzy time series resource forecast model for clouds using lstm and data correlation analysis[J]. Procedia Computer Science, 2018, 126: 636-645.
[9] KUMAR J, GOOMER R, SINGH A K. Long short term memory recurrent neural network (LSTM-RNN) based workload forecasting model for cloud datacenters[J]. Procedia Computer Science, 2018, 125:676-682.
[10] 孟煜,张斌,郭军,等.云计算环境下云服务用户并发量的区间预测模型[J].计算机学报,2017,40(2):378-396.
[11] 李晓峰,徐玖平,王荫清,等.BP人工神经网络自适应学习算法的建立及其应用[J].系统工程理论与实践,2004,24(5):1-8.
[12] GREFF K, SRIVASTAVA R K, KOUTNIK J, et al. LSTM: a search space odyssey [J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 28(10):2222-2232.
[13] Jentrialgo.Traces_en_wikipedia [DB/OL].(2017-07-29)[2019-05-25].https://github.com/asi-uniovi/lloovia/tree/master/data/paper.
[14] GURLEEN K, ANJU B, INDERVEER C. An intelligent regressive ensemble approach for predicting resource usage in cloud computing [J]. Journal of Parallel and Distributed Computing, 2019, 123:1-12.
[15] ALI A, MOSTAFA G, SAJJAD T. A learning automata-based ensemble resource usage prediction algorithm for cloud computing environment [J]. Future Generation Computer Systems, 2018, 79: 54-71.
[16] VARGHESE B, BUYYA R. Next generation cloud computing: new trends and research directions [J]. Future Generation Computer Systems, 2018,79:849-861.
[17] 梁天新,杨小平,王良,等.记忆神经网络的研究与发展[J].软件学报,2017,28(11):2905-2924.
[18] 严旭,李思源,张征.基于遗传算法的BP神经网络在城市用水量预测中的应用[J].计算机科学,2016,43(11):547-550.
[19] WANG J, PENG B, ZHANG X. Using a stacked residual LSTM model for sentiment intensity prediction [J]. Neurocomputing, 2018,332(1):93-101. |