北京邮电大学学报(社科版)

• 经济与管理 • 上一篇    下一篇

基于BPNN-LSTM组合模型的云计算资源负荷预测

  

  1. 武汉理工大学 湖北省电子商务大数据工程技术中心,湖北 武汉430070
  • 收稿日期:2019-07-23 出版日期:2020-02-28
  • 基金资助:
    国家重点研发计划(2018YFB1404303),湖北省自然科学基金资助项目(20181j0034)

Load Forecasting for Cloud Computing Resource Based #br# on BPNN-LSTM Composite Model

  1. Hubei Electronic Commerce and Big Data Engineering Technology Center,
    Wuhan University of Technology, Wuhan 430070, China
  • Received:2019-07-23 Online:2020-02-28

摘要: 有效的负荷预测对提高云计算资源利用效率、降低电力消耗和运维人力资源成本具有重要意义。针对当前云计算资源负荷预测精度低、难以准确把握历史数据时序特征的问题,提出一种引入时序因素的BPNN-LSTM(BP神经网络-长短期记忆网络)组合预测模型。综合考虑对云计算资源负荷具有重要影响的日期和时间因素,采用LSTM对BPNN的预测残差进行修正,对不同时间维度的云计算资源负荷进行预测。通过与多种预测模型的对比实验,验证了所提出的模型在对云计算资源负荷预测上具有更高的精度和稳定性。

关键词: 云计算资源, 负荷预测, 时序因素, BP神经网络, 长短期记忆网络

Abstract:  Effective load forecasting is of great significance to improving the utilization efficiency of cloud computing resources, reducing the energy consumption of cloud computing centers and reducing operation, and maintenance costs of cloud service providers Aiming to the problem of low accuracy of cloud computing resource load forecasting and inaccurate grasp of the time series characteristics of historical data, a combined forecasting model of BPNN_LSTM with time series factors is proposed Considering the date and time factors, which have significant influence on cloud computing resource load, LSTM is used to correct the residual of BPNN Compared with other prediction models, the proposed model has higher accuracy and stability in cloud computing resource load forecasting

Key words:  cloud computing resources, load forecasting, time series factors, BP neural network, long-term and short-term memory network

中图分类号: