北京邮电大学学报(社会科学版) ›› 2024, Vol. 26 ›› Issue (2): 39-49.doi: 10.19722/j.cnki.1008-7729.2024.0021

• 经济与管理 • 上一篇    下一篇

基于TF-IDF算法的运营商客户投诉原因研究

张爱华(1964—),女,安徽六安人,博士,教授,硕士生导师   

  1. 北京邮电大学 经济管理学院,北京100876
  • 出版日期:2024-04-30 发布日期:2024-05-10
  • 作者简介:张爱华(1964—),女,安徽六安人,博士,教授,硕士生导师
  • 基金资助:
    通鼎研究基金

Reasons for Customer Complaints in Operators Based on TF-IDF Algorithm

  1. School of Economics and Management, Beijing University of Posts and Telecommunications, 
    Beijing 100876, China
  • Online:2024-04-30 Published:2024-05-10

摘要: 针对运营商人工处理客户投诉工单高成本低效率问题,提出了一种基于TF-IDF算法的定量研究方法,旨在高效精准地识别客户投诉原因。选用Jieba分词,导入自定义词典和停用词列表,对运营商客户投诉工单进行关键词抽取,获取各类问题中TF-IDF值排名前6的关键词,输出关键词集。提高了关键词抽取的准确性和效率。此外,对比仅对文档集使用TF进行统计和使用TextRank算法的情况,突显了IDF的重要性及算法原理的差异。实验结果表明,光猫、路由器、机顶盒问题广泛存在于各类投诉中。针对这三类问题,为运营商提供了改进产品、服务的相关建议,对运营商集中治理、解决问题具有一定的实用价值。

关键词:  , 投诉工单, 投诉原因, 关键词抽取, TF-IDF

Abstract:  Focusing on the issue of high cost and low efficiency associated with manual processing of customer complaints by operators, a quantitative research method based on TF-IDF (term frequency-inverse document frequency) algorithm is proposed, aiming to efficiently and accurately identify the reasons for customer complaints. Jieba, combined with the custom dictionary and the list of stopword is used to extract key words from complaint worksheets. The top six key words with the highest TF-IDF values in each issue are obtained, and a set of key words is output, thereby enhancing the accuracy and efficiency of keyword extraction. Furthermore, by comparing this method with the sole use of TF and the application of the TextRank algorithm, the importance of IDF and the differences in algorithmic principles are highlighted. Results indicate that issues related to optical modems, routers, and set-top boxes widely exist in complaints. In terms of these issues, this study provides operators with relevant suggestions for improving products and services, which have certain value to operators’ managing and solving problems.

Key words:  , complaint worksheet, reason for complaint, keyword extraction, TF-IDF 

中图分类号: