北京邮电大学学报(社会科学版) ›› 2020, Vol. 22 ›› Issue (5): 17-27.doi: 10.19722/j.cnki.1008-7729.2020.0018

• 经济与管理 • 上一篇    下一篇

基于LSTM的多特征股票趋势预测研究

傅魁(1977—),男,湖北武汉人,副教授,博士   

  1. 武汉理工大学 经济学院,湖北 武汉430070
  • 收稿日期:2020-02-04 出版日期:2020-10-30 发布日期:2020-11-06
  • 作者简介:傅魁(1977—),男,湖北武汉人,副教授,博士
  • 基金资助:
    教育部人文社会科学研究规划基金项目(17YJA870006)

Stock Trend Prediction of Multi-feature Based on LSTM

  1. School of Economics, Wuhan University of Technology, Wuhan 430070, China
  • Received:2020-02-04 Online:2020-10-30 Published:2020-11-06

摘要: 股票市场作为一个复杂非线性系统,受到多种信息源影响,其趋势调整不是按照均匀时间过程变动。针对股票市场特点,结合LSTM(Long Short-Term Memory)神经网络拟合复杂时序数据的特性,使用来自新闻平台、社交平台、历史数据等不同层级来源的信息,提出一种基于LSTM的多特征股票趋势预测模型。首先使用经验模态分解对股票基础数据降噪,获取股价变动规律;将金融文本数据推送到引入注意力机制与自动编码器的改进LSTM网络模型中训练与测试,从而反映投资者心理;再经LSTM神经网络对股票趋势进行组合预测。结果表明,时序型金融文本特征的加入能有效提升模型的预测表现。

关键词: 多源数据, 多特征, LSTM, 股票趋势预测

Abstract:   As a complex nonlinear system, stock market is affected by many kinds of information sources, and its trend adjustment does not follow the uniform time process. According to the characteristics of the stock market, and combined with the characteristics of LSTM (long short term memory) neural network fitting complex time series data, a multi-feature stock trend prediction model based on LSTM is proposed by using information from different levels of sources such as news platform, social platform, historical data, etc.. Firstly, empirical mode decomposition (EMD) is used to denoise the basic stock data to obtain the law of stock price change; secondly, the financial text data is pushed to the improved LSTM network model with attention mechanism and automatic encoder for training and testing, so as to reflect the investors’ psychology; then, the combined prediction of stock trend is carried out by LSTM neural network. The results show that the time series financial text feature can effectively improve the prediction performance of the model.

Key words:  multi-source data, multi-feature, LSTM, stock trend prediction

中图分类号: