[1] 零壹财经. 2018中国P2P网贷行业年报(简版)[EB/OL].(2019-01-03)[2020-10-01].https://baijiahao.baidu.com/s?id=1621647413480787252&wfr=spider&for=pc.
[2] 新浪财经. 16个地区全部取缔,网贷清退按下加速键[EB/OL].(2020-06-04)[2020-10-01].https://baijiahao.baidu.com/s?id=1668568849741184316&wfr=spider&for=pc.
[3] 新浪财经. 权威!互金和网贷专项整治最新进展来了:近5000家机构已退出![EB/OL].(2020-04-24)[2020-10-01].https://baijiahao.baidu.com/s?id=1664852418871227889&wfr=spider&for=pc.
[4] MANELA A, ALAN M. News implied volatility and disaster concerns[J]. Journal of Financial Economics, 2017,123(1): 137-162.
[5] 史青春, 徐露莹. 负面舆情对上市公司股价波动影响的实证研究[J]. 中央财经大学学报, 2014 (10): 54-62.
[6] ZOU L, CAO K, WANG Y. Media coverage and the cross-section of stock returns: The Chinese evidence[J]. International Review of Finance,2017,19(4): 707-729.
[7] 周开国, 应千伟, 陈晓娴. 媒体关注度、分析师关注度与盈余预测准确度[J]. 金融研究,2014(2): 139-152.
[8] 文凤华, 肖金利, 黄创霞, 等. 投资者情绪特征对股票价格行为的影响研究[J]. 管理科学学报,2014(3): 60-69.
[9] STAMBAUGH R F, YU J, YUAN Y. The short of it: Investor sentiment and anomalies[J]. Journal of Financial Economics, 2012,104(2): 288-302.
[10] 程萧潇. 场景效应还是内容效应:财经新闻、网络舆情对股市行情的实证检验[J]. 统计与信息论坛,2019,34(7): 69-75.
[11] FRUGIER A. Returns,volatility and investor sentiment: Evidence from European stock markets[J]. Research in International Business and Finance,2016,38(1):45-55.
[12] MEIER C. Aggregate investor confidence in the stock market[J]. Journal of Behavioral Finance,2018,19(4):1-13.
[13] 陈荣达, 林博, 何诚颖,等. 互联网金融特征,投资者情绪与互联网理财产品回报[J]. 经济研究,2019(7):78-93.
[14] 段江娇, 刘红忠, 曾剑平. 中国股票网络论坛的信息含量分析[J]. 金融研究,2017(10): 182-196.
[15] ZHANG D, XU H, SU Z. Chinese comments sentiment classification based on word2vec and SVMperf[J]. Expert Systems with Applications, 2015,42(4): 1857-1863.
[16] GENTZKOW M, KELLY B T, TADDY M. Text as data[J]. National Bureau of Economic Research,2017(3): 1-53.
[17] 丁柏铨. 中国互联网金融舆情监测与研究论析[J]. 西南民族大学学报:人文社会科学版,2016(5): 151-157.
[18] GIANNINI R, PAULIRVINE, TAO S. The convergence and divergence of investors opinions around earnings news: Evidence from a social network[J]. Journal of Financial Markets,2019,42(1): 94-120.
[19] THRSIS T, TOMASO A. Predicting future stock market structure by combining social and financial network information[J].Physica A: Statistical Mechanics and its Applications,2019,535(12): 223-234.
[20] HUANG Y, QIU H, WU Z. Local bias in investor attention: Evidence from Chinas Internet stock message boards[J]. Journal of Empirical Finance,2016,38(part A): 338-354.
[21] TSUKIOKA Y, YANAGI J, TAKADA T, et al. Investor sentiment extracted from internet stock message boards and IPO puzzles[J]. International Review of Economics & Finance,2017,56(7): 205-217.
[22] 张懿玮, 高维和. 自我建构、文化差异和信用风险:来自互联网金融的经验证据[J]. 财经研究,2020,46(1): 34-48.
[23] 易宪容. 区块链技术、数字货币及金融风险:基于现代金融理论的一般性分析[J]. 南京社会科学,2018,373(11): 15-22+46.
[24] 方意, 王羚睿, 王炜. 金融科技领域的系统性风险:内生风险视角[J]. 中央财经大学学报,2020(2): 29-37.
[25] 杨东. 互联网金融风险规制路径[J]. 中国法学,2015(3): 80-97.
[26] 涂艳, 王翔宇. 基于机器学习的P2P网络借贷违约风险预警研究:来自“拍拍贷”的借贷交易证据[J]. 统计与信息论坛,2018(6): 69-76.
[27] POPE D, SYDNOR J. Whats in a picture? Evidence of discrimination from prosper.com[J]. Journal of Human Resources,2011,46(1): 53-92.
[28] BURTCH G, GHOSE A, WATTAL S, et al. Cultural differences and geography as determinants of online prosocial lending[J]. Management Information Systems Quarterly,2014,38(3): 773-794.
[29] LIN M, PRABHALA N, VISWANATHAN S, et al. Judging borrowers by the company they keep: friendship networks and information asymmetry in online peer-to-peer lending[J]. Management Science, 2013,59(1): 17-35.
[30] WANG C, ZHANG W, ZHAO X, et al. Soft information in online peer-to-peer lending: Evidence from a leading platform in China[J]. Electronic Commerce Research and Applications,2019,36(6): 1-15.
[31] LIU D, BRASS D J, LU Y, et al. Friendships in online peer-to-peer lending: pipes, prisms, and relational herding[J]. Management Information Systems Quarterly,2015,39(3): 729-742.
[32] YAN J, YU W, ZHAO J L. How signaling and search costs affect information asymmetry in P2P lending: The economics of big data[J]. Financial Innovation,2015,1(1):1-11.
[33] 张世君, 王成璋. 我国P2P借贷中信息不对称现象的形成及克服:以P2P平台的法律规制为视角[J]. 金融法苑,2019,98(3): 140-148.
[34] 周宇.金融危机的视角:P2P雷潮的深层形成机理[J].探索与争鸣,2019(2): 109-116+144.
[35] SERRANOCINCA C, GUTIERREZNIETO B, LOPEZPALACIOS L, et al. Determinants of default in P2P lending[J]. PLOS ONE,2015,10(10): 1-22.
[36] EMEKTER R, TU Y, JIRASAKULDECH B, et al. Evaluating credit risk and loan performance in online peer-to-peer (P2P) lending[J]. Applied Economics,2015,47(1-3): 54-70.
[37] 王莉, 石巧玲. 大数据在P2P网络借贷行业风险防范中的应用[J]. 科技经济市场,2019(1): 131-133.
[38] 张学良. P2P行业风险分析及处置对策建议[J]. 人民法治,2019,51(3): 38-40.
[39] 李展儒. P2P网贷的风险监管[J]. 中国商论,2019 (2): 59-61.
[40] 丁晓蔚, 高淑萍. 对P2P网贷风险及相关舆情风险的研究:基于大数据就网民相应情绪所做的分析[J]. 当代传播,2017(2): 27-31.
[41] 王书斌, 谭中明, 陈艺云. P2P网贷债权市场中违约舆情的传染机制[J]. 金融论坛,2017(11): 56-69.
[42] 张亚丽.P2P网贷模式下中小企业融资风险探究[J].科技经济市场,2019(1): 53-54.
[43] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003( 3): 993-1022.
[44] 孙宝文, 牛超群, 赵宣凯. 财务困境识别:中国P2P平台的风险特征研究[J]. 中央财经大学学报,2016(7):32-43.
[45] 姚尧之, 王坚强, 刘志峰. 混频投资者情绪与股票价格行为[J]. 管理科学学报,2018,21(2): 104-113.
[46] ABOODY D, EVEN-TOV O, LEHAVY R, et al. Overnight returns and firm-specific investor sentiment[J]. Journal of Financial & Quantitative Analysis,2018,53(2): 485-505.
|